AEC/APC SYMPOSIUM XII
Volume II
September 23-28, 2000
Caesars, Lake Tahoe, Nevada
Comparison of Run-to-Run Control Methods in Semiconductor Manufacturing Processes

Chang Zhang, Hao Deng and John S. Baras

Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, 20742

Introduction

- Run-to-Run (RtR) control methods are generalized.
- The set-valued RtR controllers with the ellipsoid approximation are compared with other RtR controllers by simulation according to the following principles:
 - A good RtR controller should be able to compensate for various disturbances, such as small drifts and large step disturbances.
 - It should be also able to deal with constraints, cost requirement, multiple targets, time delays, etc.
- Preliminary results show satisfactory performance of the set-valued RtR controller with ellipsoid approximation.
Generalization of RtR Control Methods

In the table, “Y” denotes “Applicable”; “N” denotes “Not applicable”, “L” means “Low”, “H” means “High”, and “M” means “Medium”.

<table>
<thead>
<tr>
<th>RtR control methods</th>
<th>Linear process</th>
<th>Light non-linear process</th>
<th>Severe non-linear process</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential Weight Moving Average (EWMA)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>L</td>
</tr>
<tr>
<td>Machine learning</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>H</td>
</tr>
<tr>
<td>Least Square Recursive (LSR)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>Probability</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>Artificial Neural Network (ANN)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>H</td>
</tr>
<tr>
<td>Set-valued</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
</tr>
</tbody>
</table>

The Set-valued RtR Controllers

- Two main ellipsoid algorithms available:
 - The Modified Optimal Volume Ellipsoid (MOVE) algorithm [3].
 - The Optimal Bounding Ellipsoid (OBE) algorithm. It was improved by Dasgupta and Huang, and is called Dasgupta Huang OBE (DHOB) algorithm [4].
- The corresponding controllers are called the SVR-MOVE controller and the SVR-DHOB controller respectively.
- Two schemes available for the SVR-DHOB controller:
 - The DHOB-MR controller uses the center of the ellipsoid as the estimate of the process model;
 - The DHOB-SV controller minimizes the worst-case cost.
Comparison of the SVR-MOVE Controller with the EWMA Controller

The simulation is based on the low pressure chemical vapor deposition (LPCVD) furnace process:

\[
R_1 = \exp(20.65 + 0.29 \ln P - 1.5189.21T^{-1} - 47.97Q^{-1})
\]

\[
R_2 = \frac{R_1(1 - 8838.93 \times 10^{-5} \times R_1 Q^{-1})}{1 + 8838.93 \times 10^{-5} \times R_1 Q^{-1}}
\]

- Inputs: T stands for the temperature, P the pressure, and Q the silane flow rate. They are constrained in certain scopes.
- Outputs: \(R_1 \) and \(R_2 \) are the deposition rates on the first and last wafer respectively.
- Noises: Drifts and white noises are added to the process.

When There Exists Drift Noise

- The EWMA controller is used to control only one process output \(R_1 \).
- The SVR-MOVE controller controls two processes \(R_1 \) and \(R_2 \).
- Both controllers perform well under the disturbance of drifts.

891
When There Exists Shift Noise

- The EWMA controller is used to control only R_1.
- The EWMA controller needs one more step to return the process to target than the SVR-MOVE controller.
- The SVR-MOVE controller performs better than the EWMA controller under step disturbance.

Comparison of the SVR-MOVE Controller with the EWMA and the ANN EWMA Controllers

- The comparison is based on the second-order model in [1].
- Two cases are compared:
 - Small model error with a drift buried in white noise;
 - Large model error with a drift buried in white noise.
- The process controlled by the EWMA controller is often unstable in both cases for even conservative weights;
- The process controlled by the ANN-EWMA controller is unstable in the large model error case.
- The processes controlled by the SVR-MOVE controller are stable with proper selection of parameters.
Process Controlled by the SVR-MOVE Controller

There is a small model error

![Graph showing small model error comparison]

There is a large model error

![Graph showing large model error comparison]

Comparison of the SVR-DHOBE Algorithm with the OAQC Algorithm

- The process models and environment noises are exactly the same as those in [2].
- Partial simulation result is shown in the following table:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OAQC</td>
<td>DHOBE-MR</td>
<td>DHOBE-SV</td>
<td>OAQC</td>
</tr>
<tr>
<td>Y1</td>
<td>1719.7</td>
<td>1754.7</td>
<td>1787.7</td>
<td>1718.2</td>
</tr>
<tr>
<td>Y2</td>
<td>168.4</td>
<td>157.3</td>
<td>168.1</td>
<td>165.7</td>
</tr>
<tr>
<td>MSE1</td>
<td>288.9</td>
<td>259.7</td>
<td>228.2</td>
<td>291.0</td>
</tr>
<tr>
<td>MSE2</td>
<td>79.2</td>
<td>67.5</td>
<td>76.9</td>
<td>78.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OAQC</td>
<td>DHOBE-MR</td>
<td>DHOBE-SV</td>
<td>OAQC</td>
</tr>
<tr>
<td>Y1</td>
<td>1781.9</td>
<td>1807.4</td>
<td>1661.2</td>
<td>1741.4</td>
</tr>
<tr>
<td>Y2</td>
<td>165.0</td>
<td>177.5</td>
<td>189.2</td>
<td>189.1</td>
</tr>
<tr>
<td>MSE1</td>
<td>234.2</td>
<td>211.9</td>
<td>350.2</td>
<td>280.8</td>
</tr>
<tr>
<td>MSE2</td>
<td>74.8</td>
<td>86.1</td>
<td>99.2</td>
<td>96.0</td>
</tr>
</tbody>
</table>

893
Comparison of the SVR-DHOBE Algorithm with the OAO Algorithm (Cont’d)

• For detailed simulation processes and comparison figures, please refer to [4].
• The performance of the two SVR-DHOBE controllers is comparable to the OAO controller.
• There is no big difference in the performance of the two SVR-DHOBE controllers.
• This comparison also shows that it is insufficient to use linear models to approximate severe nonlinear processes.

Comparison of the SVR-MOVE Controller with the SVR-DHOBE Controller

• Difference between the two ellipsoid algorithms:
 – The derivation of the MOVE algorithm is based on a geometrical point of view.
 – The DHOBE algorithm uses a Recursive Least Square (RLS) scheme to update the ellipsoid.
• The comparison is conducted on:
 – an almost linear photoresist process I (Figure a: SVR-MOVE; Figure b: SVR-DHOBE);
 – photoresist process I when white noises in the process are removed and only the drifts exist (Figure c: SVR-MOVE; Figure d: SVR-DHOBE);
 – a full second-order nonlinear photoresist process II (Figure e: SVR-MOVE; Figure f: SVR-DHOBE).
Photoresist Process I Controlled by Two Set-valued RrR Controllers

Figure a

Figure b

Figure c

Figure d

Photoresist Process II Controlled by Two Set-valued RrR Controllers

Figure e

Figure f

- Simulations show that both controllers perform well.
- However the DHOBE algorithm has small overshoots, which affects the control quality slightly.
Summary

- Several important RtR control methods are compared in this paper.
- Preliminary simulations show that the set-valued RtR controller with ellipsoid approximation has better or comparable performance over some other RtR controllers.
- In some cases, the SVR-MOVE controller performs better than the SVR-DHOBE controller.
- It also shows that it is insufficient to use linear models to approximate severe nonlinear processes.
- More simulations will be conducted in the near future.

References

