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Abstract—We use recent advances from the theory of multivari-
ate stochastic orderings to formalize the “folk theorem” to the ef-
fect that positive correlations lead to increased buffer occupancy
and larger buffer levels at a discrete-time infinite capacity multi-
plexer queue. Input sequences will be compared in the supermodu-
lar (sm) ordering and buffer contents in the increasing convex (icx)
ordering, respectively.

Three popular classes of (discrete-time) traffic models are dis-
cussed, namely the Fractional Gaussian Noise traffic model, the
on-off source model and the M |G|∞ traffic model. The indepen-
dent version of an input process in each of these classes of traffic
models is a member of the same class. In varying degree of gen-
erality, we show that this independent version is smaller than the
input sequence itself, and that the corresponding buffer content
processes are similarly ordered.

I. INTRODUCTION

A. Buffer provisioning

A basic design problem in the engineering of store-and-
forward networks is buffer provisioning, namely the determi-
nation of buffer sizes at various network nodes. This question is
often addressed through the analysis of an appropriate queueing
system. The simplest of models operates in discrete time and
considers a flow of packets arriving to a finite buffer with a ca-
pacity of at most B packets; packets are transmitted out of the
buffer in order of arrival over a communication link of constant
rate. More precisely, with time organized in contiguous times-
lots of identical duration, let QB

t denote the number of packets
still present in the system at the beginning of timeslot [t, t + 1)
and let At denote the number of new packets arriving into the
buffer during that timeslot. If the buffer output link can transmit
c packets/slot, then the buffer content evolves according to the
recursion

QB
t+1 = min

(

B, [QB
t + At − c]+

)

(1)

for all t = 0, 1, . . ., for some given intial condition QB
0 . If the

input sequence {At, t = 0, 1, . . .} is stationary and ergodic,
then the system eventually reaches a statistical equilibrium or
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steady-state regime in that QB
t =⇒t QB for some random vari-

able (rv) QB (with =⇒t denoting convergence in law as t goes
to infinity). 1

Determining the distribution of QB is a natural step towards
the evaluation of key design quantities such as the blocking
probability and the packet loss rate. This task is a very diffi-
cult one; closed-form solutions are available in only a few in-
stances of input sequences {At, t = 0, 1, . . .}, and numerical
techniques need to be developed to handle most cases of practi-
cal interest.

However, in many situations (e.g., ATM networks), the block-
ing probability and cell loss rate assume acceptable levels only
when B is large. With this in mind, it is reasonable to look in-
stead at the infinite buffer system (B = ∞) associated with (1).
The evolution of the buffer content sequence {Qt, t = 0, 1, . . .}
is now governed by the Lindley recursion

Qt+1 = [Qt + At − c]+, t = 0, 1, . . . (2)

for some given initial condition Q0. It is well known [19] that if
the input sequence {At, t = 0, 1, . . .} is stationary and ergodic
with E [A0] < c, then the system will reach statistical equilib-
rium, i.e., Qt =⇒t Q for some IR+-valued rv Q.

The relevance of this approach is reinforced by the observa-
tion that QB

t ≤ Qt for all t = 0, 1, . . . and all B > 0 as can
be shown recursively through a direct sample path comparison
(provided QB

0 ≤ Q0). Thus, the upper bounds P
[

QB
t = B

]

≤
P [Qt ≥ B] are valid for all t = 0, 1, . . ., a fact which translates
to steady state as

P
[

QB = B
]

≤ P [Q ≥ B] , B > 0 (3)

under the appropriate conditions. As argued earlier, we need
secure reasonably good approximations to the blocking prob-
ability P

[

QB = B
]

only for large B. Hence, as engineering
designs tend to be conservative, (3) suggests that this objective
can be achieved by evaluating the upper bound P [Q ≥ B] for
large B.

B. Dependencies in traffic models

In the past decade this evaluation task has been the subject
of intense investigations in the wake of several traffic measure-
ment studies which have concluded to the “failure of Poisson

1The existence of QB is always guaranteed in the stationary and ergodic
framework, but additional assumptions are required to have uniqueness and in-
dependence with respect to the initial condition.



modeling” [31]. Indeed, starting with the landmark data set
collected at BellCore [17], a growing number of measurement
studies have by now concluded that network traffic exhibits time
dependencies at a much larger number of time scales than had
been traditionally observed. This long-range dependence has
been detected in a wide range of applications and over multiple
networking infrastructures, e.g., Ethernet LANs [12], [17], [39],
VBR traffic [7], [14], Web traffic [10] and WAN traffic [31].

Roughly speaking, long–range dependence amounts to cor-
relations in the packet stream spanning multiple time scales,
which are individually rather small but which decay so slowly
as to be non–summable. This is expected to affect performance
in a manner drastically different from that predicted by (tradi-
tional) summable correlation structures which typically arise in
Markovian traffic models and Poisson–like sources. This state
of affairs has generated a strong interest in a number of al-
ternative traffic models which capture observed (long–range)
dependencies; good surveys are available in [13], [22], [26].
Proposed models include Fractional Brownian Motion [25] and
its discrete–time analog, Fractional Gaussian Noise [1], on-off
sources with subexponential activity periods [15] (and refer-
ences therein), and the M |G|∞ traffic model with subexponen-
tial session duration [28].

Under these new models the buffer distribution displays much
heavier tails than the exponential tails typically associated with
short–range dependent Markovian models. Thus, from these
analyses emerges theoretical support for the recommendation
that in networks carrying long-range dependent traffic, buffers
should be provisioned more generously than would otherwise
be the case with short-range dependent traffic.

C. Positive correlations

This recommendation is often based on asymptotic results of
the form

lim
B→∞

1

v(B)
lnP [Q > B] = −γ (4)

with constant γ > 0 and monotone function v : (0,∞) →
(0,∞) increasing at infinity. Of course, γ and v are determined
from the statistics of the input sequence {At, t = 0, 1, . . .} to
the buffer dynamics (2) – Typical examples include v(B) = B,
v(B) = Bβ (β > 0) and v(B) = ln B [26] (and references
therein).

Thus, (4) implies tails of the form

P [Q > B] ∼ e−v(B)(γ+o(1)) (B → ∞) (5)

with more detailed information on the tail of Q rarely avail-
able as closed-form expressions are simply not known, or hard
to come by due to the inherent computational complexity of
these models. However, in most traffic models known to the
authors for which (4) has been developed, these asymptotics al-
ready suggest the following: Assume the input process {At, t =
0, 1, . . .} to be positively correlated, say associated [Definition
12], and let {Ât, t = 0, 1, . . .} denote its independent version
[Definition 11]. Then, the corresponding buffer content pro-
cesses {Qt, t = 0, 1, . . .} and {Q̂t, t = 0, 1, . . .} are “ordered”
in some suitable stochastic sense (to be defined shortly), with

Q̂ “smaller” than Q (where Q̂ and Q denote the steady state
versions whenever appropriate). In other words, positive cor-
relations lead to increased buffer occupancy and larger buffer
levels.

This “folk theorem” has been observed by others, e.g., the
simulation study in [18] with the help of the TES modeling tool.
Moreover, when Large Deviations arguments are used to vali-
date (4) with v(B) = B, the constant γ can often be related
to the Large Deviations rate functional of the input sequence
{At, t = 0, 1, . . .}, and under association, it is then easy to see
that

lim
B→∞

1

B
lnP

[

Q̂ > B
]

= −γ̂ (6)

with γ ≤ γ̂. Consequently, P
[

Q̂ > B
]

is less than P [Q > B]

for large values of B.

D. The results

In this paper we consider this “folk theorem” on a more for-
mal basis with the help of recent advances from the theory of
multivariate stochastic orderings [21], [34]: We compare input
sequences to (2) in the supermodular (sm) ordering [Definition
4] and the buffer contents in the increasing convex (icx) ordering
[Definition 3]. The sm ordering is well suited to capture posi-
tive dependence in the components of a random vector, while
the icx ordering formalizes comparability in terms of variability
and size.

In our discussion we consider three popular (discrete-time)
traffic models, namely the Fractional Gaussian Noise traffic
model [Section VII], the on-off source model [Section VIII] and
the M |G|∞ traffic model [Section IX]. For each of these classes
of models we obtain the following result: Let {At, t = 0, 1, . . .}
and {Ât, t = 0, 1, . . .} denote the input traffic process and its
independent version [Definitions 7 and 11]. Then, in varying
degree of generality, we show that

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .}. (7)

with the independent version being a member of the same class
of traffic models as the input traffic process. Moreover, the
corresponding buffer content processes {Qt, t = 0, 1, . . .} and
{Q̂t, t = 0, 1, . . .} are icx ordered with

Q̂t ≤icx Qt, t = 0, 1, . . . . (8)

provided Q̂0 = Q0. 2 In other words, the independent version
does act as a lower bound, thereby providing a formalization of
the ”folk theorem” mentionned above for these classes of traffic
models. For the Fractional Gaussian Noise traffic model, we are
also able to show the stronger result [Theorem 24] that increas-
ing the Hurst parameter necessarily increases the variability of
the buffer levels. For on-off sources, conditions on the distribu-
tions of the on- and off-periods are needed to obtain (7) and (8)
[Proposition 25].

The passage from (7) to (8) is a simple consequence of prop-
erties of the sm ordering [Theorem 19]. The key idea behind the

2As briefly explained in Section VI, the steady state comparison Q̂ ≤icx Q
is easily derived from (8) in a standard manner whenever appropriate [36], [38].



discussion is a form of positive dependence, known as stochas-
tic increasingness in sequence. As shown by Meester and Shan-
thikumar [21], this notion provides a sufficient condition for (7)
to hold [Theorem 15]. While these ideas are applied without too
much difficulty to the Fractional Gaussian Noise traffic models
and to on-off sources, the discussion is more delicate in the case
of M |G|∞ traffic models. Many proofs and details are omitted
in the interest of brevity; they are available in [38].

The paper is organized as follows: Some basic notation and
definitions are collected in Section II, and stochastic orderings
are introduced in Section III. Section IV is devoted to multi-
variate orderings that capture the dependence structure among
the components of random vectors. The key notion of stochas-
tic increasingness in sequence is presented in Section V, and its
use for the buffer sizing problem is discussed in Section VI. Fi-
nally, Sections VII, VIII and IX discuss the results (7)–(8) for
the Fractional Gaussian Noise traffic model, the on-off source
and the M |G|∞ traffic model, respectively.

II. NOTATION AND DEFINITIONS

A word on the notation in use: Equivalence in law or in dis-
tribution between rvs (and stochastic processes) is denoted by
=st.

For any vector µ in IRn and for any symmetric non-negative
n × n matrix Σ = (Σij), we write X =st N (µ,Σ) to indi-
cate that the IRn-valued rv X is normally distributed with mean
vector µ and covariance matrix Σ. For α (0 < α < 1), an
{1, 2, . . .}-valued rv X is said to a geometric rv with parameter
α if it is distributed according to the pmf

P [X = k] = αk−1(1 − α), k = 1, 2, . . . , (9)

in which case we write X =st G(α).
For any IN-valued rv X , set

S(X) := {t = 1, 2, . . . : P [X ≥ t] > 0} (10)

and define the hazard function (also known as the failure rate
function) of the rv X by

hX(t) =
P [X = t]

P [X ≥ t]
, t ∈ S(X).

Definition 1: We say that the IN-valued rv X is increasing
failure rate (IFR) (resp. decreasing failure rate (DFR)) if the
mapping S(X) → IR+ : t → hX(t) is increasing (resp. de-
creasing).

If the IN-valued rv X has finite mean, we define its forward
recurrence time X̂ to be the IN-valued rv with pmf given by

P
[

X̂ = t
]

=
P [X ≥ t]

E [X]
, t = 0, 1, . . . . (11)

Note that P
[

X̂ ≥ t
]

= 0 if and only if P [X ≥ t] = 0, and we

conclude S(X̂) = S(X).
Throughout, increasing (resp. decreasing) is to be understood

to mean non-decreasing (resp. non-increasing).

III. STOCHASTIC ORDERINGS

In this section, we summarize basic definitions concerning the
stochastic orderings of random vectors. Additional information
can be found in the monographs by Shaked and Shanthikumar
[35], and by Stoyan [36].

Definition 2: Let Φ be a class of Borel measurable functions
ϕ : IRn → IR. We say that the two IRn-valued rvs X and Y

satisfy the relation X ≤Φ Y if

E [ϕ(X)] ≤ E [ϕ(Y)] (12)

for all functions ϕ in Φ, whenever the expectations exist.
This generic definition has been specialized in the literature;

here are two important examples.
Definition 3: The IRn-valued rvs X and Y are said to be or-

dered according to
• the usual stochastic ordering, written X ≤st Y, if (12)

holds for all increasing functions ϕ : IRn → IR;
• the increasing convex ordering, written X ≤icx Y, if (12)

holds for all increasing convex functions ϕ : IRn → IR.
The icx ordering is appropriate for comparing the variability

of rvs. However, in the case of random vectors, it is also desir-
able to compare their “dependence” structures.

IV. DEPENDENCE ORDERINGS

Several stochastic orderings have been found well suited for
comparing the dependence structures of random vectors. Here
we rely on the supermodular ordering which has recently been
used in several queueing and reliability applications [4], [5],
[34]. We begin by introducing the class of functions associated
with this ordering.

Definition 4: A function ϕ : IRn → IR is said to be
• supermodular (sm) if

ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y), x,y ∈ IRn

where we set x∨y = (x1 ∨ y1, . . . , xn ∨ yn) and x∧y =
(x1 ∧ y1, . . . , xn ∧ yn);

• increasing supermodular (ism) if it is increasing in addition
to being sm.

We are now ready to define the supermodular orderings.
Definition 5: The IRn-valued rvs X and Y are said to be or-

dered according to
• the supermodular ordering, written X ≤sm Y, if (12)

holds for all supermodular Borel measurable functions ϕ :
IRn → IR;

• the increasing supermodular ordering, written X ≤ism Y,
if (12) holds for all increasing supermodular Borel measur-
able functions ϕ : IRn → IR.

It is a simple matter to check that for any IRn-valued rvs
X and Y, the comparison X ≤sm Y necessarily implies the
stochastic equalities

Xi =st Yi, i = 1, 2, . . . , n. (13)

Additional information on the sm and ism orderings can be
found in [4], [5], [21], [24], [34], [37]. In particular, we shall



use repeatedly the fact that the sm ordering is closed under con-
volution.

Lemma 6: Let X,Y and Z be independent IRn-valued rvs.
If X ≤sm Y, then X + Z ≤sm Y + Z.

Iterating Lemma 6 readily leads to a useful fact contained in
Corollary 8, but first, a definition:

Definition 7: For IRn-valued rvs X and X̂, we say that
X̂ = (X̂1, . . . , X̂n) is an independent version of X =
(X1, . . . , Xn) if the rvs X̂1, X̂2, . . . , X̂n are mutually indepen-
dent with X̂k =st Xk, k = 1, . . . , n.

Corollary 8: Let {Xk, k = 1, 2, . . .} denote a sequence of
mutually independent IRn-valued rvs. For each k = 1, 2, . . ., let
X̂k = (X̂k1, . . . , X̂kn) denote an independent version of Xk. If
X̂k ≤sm Xk for all k = 1, 2, . . ., then for each N = 1, 2, . . .,
the rv

∑N
k=1 X̂i is an independent version of

∑N
k=1 Xk and

N
∑

k=1

X̂k ≤sm

N
∑

k=1

Xk. (14)

We also note [24, Thm. 3.1, p. 112]
Lemma 9: Let {Xi, i = 1, 2, . . .} and {Yi, i = 1, 2, . . .}

denote two sequences of IRn-valued rvs such that Xn =⇒n X∞

and Yn =⇒n Y∞. If Xn ≤sm Yn for each n = 1, 2, . . ., then
X∞ ≤sm Y∞.

Finally, we shall find it useful to extend some of these defini-
tions to sequences of rvs.

Definition 10: We say that the two IR-valued sequences X =
{Xn, n = 1, 2, . . .} and Y = {Yn, n = 1, 2, . . .} satisfy the
relation X ≤sm Y if (X1, . . . , Xn) ≤sm (Y1, . . . , Yn) for all
n = 1, 2, . . ..

Definition 11: For sequences of IR-valued rvs X =
{Xn, n = 1, 2, . . .} and X̂ = {X̂n, n = 1, 2, . . .}, we say that
X̂ is an independent version of X if the rvs {X̂n, n = 1, 2, . . .}
are mutually independent with X̂n =st Xn for all n = 1, 2, . . ..

V. POSITIVE DEPENDENCE

Positive dependence in a collection of rvs can be captured in
several ways. The association of rvs is one of the most useful
such characterizations; it was introduced by Esary, Proschan and
Walkup [11] and has proved useful in various settings [3], [9],
[16].

Definition 12: The IR-valued rvs {X1, . . . , Xn} are said to
be associated if, with X = (X1, . . . , Xn), the inequality

E [f(X)g(X)] ≥ E [f(X)]E [g(X)]

holds for all increasing functions f, g : IRn → IR for which the
expectations exist and are finite.

Here, we focus on a stronger notion of positive dependence:
Definition 13: The IR-valued rvs {X1, . . . , Xn} are said

to be sequentially stochastically increasing (SSI) if for each
k = 1, 2, . . . , n − 1, the family of conditional distributions
{[Xk+1|X1 = x1, . . . , Xk = xk]} is stochastically increasing
in x = (x1, . . . , xk).

More precisely, this definition states that for each k =
1, 2, . . . , n − 1, for x and y in IRk with x ≤ y componentwise,
it holds that

[Xk+1|(X1, . . . , Xk) = x] ≤st [Xk+1|(X1, . . . , Xk) = y]

where [Xk+1|(X1, . . . , Xk) = x] denotes any rv dis-
tributed according to the conditional distribution of Xk+1

given (X1, . . . , Xk) = x (with a similar interpretation for
[Xk+1|(X1, . . . , Xk) = y]).

These definitions can be extended to sequences in a natural
way along the lines of Definition 10:

Definition 14: We say that the IR-valued sequence X =
{Xn, n = 1, 2, . . .} is SSI (resp. associated) if for each n =
1, 2, . . ., the rvs {X1, . . . , Xn} are SSI (resp. associated).

If the IR-valued rvs {X1, . . . , Xn} are SSI, then they are nec-
essarily associated [3, Thm. 4.7, p. 146] but the converse may
not be true. The next result was established in [21], and relates
the SSI property of rvs to the supermodular ordering. This fact
will prove crucial for subsequent developments in this paper:

Theorem 15: If the IR+-valued rvs {X1, . . . , Xn} are SSI,
then

(X̂1, X̂2, . . . , X̂n) ≤sm (X1, X2, . . . , Xn), (15)

where (X̂1, X̂2, . . . , X̂n) is the independent version of
(X1, X2, . . . , Xn).

VI. THE BUFFER SIZING PROBLEM

We now return to the buffer model with infinite buffer ca-
pacity and constant service rate of c packets/slot: If {At, t =
0, 1, . . .} denotes the input traffic feeding into the system, then
the buffer content sequence {Qt, t = 0, 1, . . .} is characterized
by the Lindley recursion (2) (reproduced here for easy refer-
ence)

Q0 = q; Qt+1 = [Qt + At − c]+, t = 0, 1, . . . (16)

for some fixed initial condition q.
For each t = 1, 2 . . ., it is plain that the buffer content Qt is

a function of the input traffic A0, . . . , At−1 (and of the initial
condition q). Thus, Qt = Tt(A0, . . . , At−1, Q0) for some map-
ping Tt : IRt × IR → IR. This function is readily obtained by
iterating the mapping T : IR2 → IR defined by

T (q, a) := (q + a − c)+, (q, a) ∈ IR2.

As we have in mind to apply Theorem 15, we are interested in
the supermodularity of the mappings {Tt, t = 1, 2, . . .} (with
T1 = T ). The main result along these lines is contained in

Proposition 16: For each t = 1, 2, . . . and each q in IR, the
mapping IRt → IR : (a0, . . . , at−1) → Tt(a0, . . . , at−1, q) is
ism.

Proposition 16 is readily established by induction (on t) with
the help of the following fact due to Bäuerle [4].

Lemma 17: For any ism function ϕ : IRn → IR and any icx
function g : IR → IR, the composition g ◦ ϕ : IRn → IR is ism.

The following consequence of Lemma 17 is straightforward:
Lemma 18: If X ≤sm Y, then ϕ(X) ≤icx ϕ(Y) for any

ism Borel measurable mapping ϕ : IRn → IR.
Combining Proposition 16 and Lemma 18, we have a useful

result already obtained by Bäuerle [4].
Theorem 19: Let {A1

t , t = 0, 1, . . .} and {A2
t , t =

0, 1, . . .} be input traffic processes to the discrete-time single
server queue (16). If

{A1
t , t = 0, 1, . . .} ≤sm {A2

t , t = 0, 1, . . .},



then the corresponding buffer contents {Q1
t , t = 0, 1, . . .} and

{Q2
t , t = 0, 1, . . .} are ordered in the icx ordering, i.e., for any

fixed initial condition Q1
0 = Q2

0 = q, we have Q1
t ≤icx Q2

t for
all t = 1, 2, . . ..

With additional assumptions on the input sequences, the tran-
sient results of Theorem 19 can be carried over to steady state:

Theorem 20: Under the assumptions of Theorem 19, if the
input sequence {Ai

t, t = 0, 1, . . .} is stationary and ergodic with
E

[

Ai
0

]

< c, i = 1, 2, then Qi
t ⇒t Qi, independently of the

initial condition, and the comparison Q1 ≤icx Q2 holds.
This steady state result is made possible by the fact that the

buffer sequence {Qi
t, t = 0, 1, . . .} is stochastically increasing

with t if Qi
0 = 0, i = 1, 2 [19], In other words, Qi

t ≤st Qi
t+1

for all t = 0, 1, . . . and the desired result follows by using this
monotonicity in the proof of the stability of the icx ordering un-
der weak convergence [36, Prop. 1.3.2, p. 10]. A non-trivial
comparison is obtained when the limiting rvs Q1 and Q2 have
finite first moments. However, in all cases of interest here, this
finiteness property can be established under mild moment con-
ditions on the input sequences. In what follows, in the interest
of brevity, we shall only discuss the transient results; full details
concerning the steady state results are available in [38].

VII. FRACTIONAL GAUSSIAN NOISE TRAFFIC

A detailed treatment of Fractional Gaussian Noise (FGN) can
be found in [33]. Its use for traffic modeling is discussed in [25]
and in [26] (and references therein).

A. Fractional Gaussian Noise (FGN)

With 0 < H < 1, Fractional Gaussian Noise with Hurst
parameter H is a zero-mean stationary Gaussian sequence
{NH

t , t = 0, 1, . . .} with (auto)covariance function

ΓH(k) =
σ2

2
(|k + 1|2H − 2|k|2H + |k − 1|2H),

k = 0, 1, . . . (17)

for some σ2 > 0. We refer to this sequence by FGN(H).
We consider only the range 0.5 ≤ H < 1, which corresponds

to positive correlations as was found appropriate for network
traffic modeling. When 0.5 < H < 1, the asymptotics [33]

ΓH(k) ∼ σ2H(2H − 1)k2H−2 (k → ∞)

show that FGN(H) exhibits long-range dependence [6]. It is
also clear from (17) that FGN(H) is an exactly second-order
self-similar sequence, thus a self-similar sequence, since it is a
Gaussian sequence.

The FGN(H) traffic model we use as input traffic is the se-
quence {AH

t , t = 0, 1, . . .} defined by

AH
t = m + NH

t , t = 0, 1, . . .

where {NH
t , t = 0, 1, . . .} is FGN(H) (0.5 ≤ H < 1) and

the scalar m denotes the average traffic rate. The sequence
{AH

t , t = 0, 1, . . .} is thus also a stationary Gaussian process

with E
[

AH
t

]

= m (t = 0, 1, . . .) and with covariance func-
tion still given by (17). Therefore, {AH

t , t = 0, 1, . . .} is also a
self-similar process.

The independent version {Ât, t = 0, 1, . . .} of FGN(H) must

be a sequence of i.i.d. Gaussian rvs with E
[

Ât

]

= m (t =

0, 1, . . .). Since ΓH(0) = σ2, its covariance function is given
by Γ̂(k) = σ2δ(k) where δ(k) = 1 when k = 0 and δ(k) = 0
when k 6= 0. Equivalently, this independent process is simply
FGN(H) with H = 0.5. Indeed, when H = 0.5 in (17), we
get ΓH(k) = 0 for all k = 1, 2, . . . and {N 0.5

t , t = 0, 1, . . .}
is indeed a sequence of i.i.d. Gaussian rvs, and so is {A0.5

t , t =
0, 1, . . .}. Since the independent version of FGN(H) does not
depend on H , it is appropriate to simply refer to it as {Ât, t =
0, 1, . . .} without further reference to H in the notation.

B. Comparisons for FGN traffic models

For each t = 0, 1, . . ., [AH
t+1|A

H
0 , . . . , AH

t ] is normally dis-
tributed. Since a Gaussian rv is stochastically increasing in the
mean [35], the SSI property will follow if we can show that
the conditional mean E

[

AH
t+1|A

H
0 = a0, . . . , A

H
t = at

]

is an
increasing function in (a0, . . . , at). Although the covariance
function of the underlying sequence is explicitly given, we were
unable to obtain usable closed-form expressions for these con-
ditional expectations. This is due to the very complicated struc-
ture of the involved matrices (and their inverses). Instead, we
turn to the comprehensive characterization of stochastic order-
ings given for Gaussian rvs by Müller [23, Thm. 3.8].

Theorem 21: Let X and Y be IRn-valued rvs such that
X =st N (µ,Σ) and Y =st N (µ′,Σ′). Then X ≤sm Y if
and only if X and Y have the same marginals and Σij ≤ Σ′

ij

for all i, j = 1, . . . , n.
From (17), with 0.5 ≤ H < 1, ΓH(0) = σ2 and ΓH(k) ≥ 0

for all k = 1, 2, . . .. Moreover, E
[

Ât

]

= E
[

AH
t

]

= m (t =

0, 1, . . .). As a direct application of Theorem 21, we conclude
that the independent version (FGN(H) with H = 0.5) is indeed
a lower bound process for the FGN(H) with 0.5 ≤ H < 1.

Theorem 22: Let {AH
t , t = 0, 1, . . .} be a FGN(H) traffic

model with parameter 0.5 ≤ H < 1. Its independent version
{Ât, t = 0, 1, . . .} coincides with the FGN(0.5) traffic model,
and satisfies

{Ât, t = 0, 1, . . .} ≤sm {AH
t , t = 0, 1, . . .}.

Moreover, the corresponding buffer contents {Q̂t, t = 0, 1, . . .}
and {QH

t , t = 0, 1, . . .} are ordered in the icx ordering, i.e., for
any fixed initial condition Q̂0 = QH

0 = q, we have Q̂t ≤icx QH
t

for all t = 0, 1, . . ..
In fact, Theorem 21 makes it possible to compare two FGN

traffic models with different Hurst parameters H and H ′ in
(0.5, 1) such that H ′ < H . To do this, we use elementary cal-
culus to derive a simple monotonicity result for the covariance
function (17).

Lemma 23: For each k = 0, 1, . . ., the mapping H →
ΓH(k) given by (17) is monotone increasing on the interval
(0.5, 1).

The following strengthening of Theorem 22 is now within
reach.



Theorem 24: With H and H ′ in the interval (0.5, 1) such
that H ′ < H , we have the comparison

{AH′

t , t = 0, 1, . . .} ≤sm {AH
t , t = 0, 1, . . .},

between the FGN traffic models with parameter H ′ and H ,
respectively. Moreover, for the corresponding buffer contents
{QH′

t , t = 0, 1, . . .} and {QH
t , t = 0, 1, . . .}, it holds for any

fixed initial condition QH′

0 = QH
0 = q that QH′

t ≤icx QH
t for

all t = 0, 1, . . ..

Proof. The comparison in the sm ordering follows by the
combined application of Theorem 21 and Lemma 23 under the
condition H ′ < H . The comparison in the icx ordering is now
obtained via Theorem 19.

From Theorem 22, we can conclude, as expected, that the
long-range dependent traffic (0.5 < H < 1) requires more
buffer space than the short-range dependent traffic (H = 0.5).
Moreover, when H ′ < H , ΓH′(k) ≤ ΓH(k), i.e., FGN(H) is
more correlated than FGN(H ′), and by Theorem 24, the more
correlated the traffic, the larger the buffer space needed to meet
the same QoS requirement.

VIII. ON–OFF SOURCES

A. Modeling on-off sources

A discrete-time on-off source with peak rate r is described by
a succession of cycles, each such cycle comprising an off-period
followed by an on-period. During the on-periods the source is
active and produces traffic at the constant rate of r (packet/slot)
3; the source is silent during the off-periods: For each n =
0, 1, . . ., let Bn and In denote the durations (in timeslots) of
the on-period and off-period in the (n+1)st cycle, respectively.
Thus, if the epochs {Tn, n = 0, 1, . . .} denote the beginning of
successive cycles, with T0 := 0 we have Tn+1 :=

∑n
`=0 I`+B`

(n = 0, 1, . . .). The activity of the source is then described by
the {0, 1}-valued process {At, t = 0, 1, . . .} given by

At :=
∞
∑

n=0

1 [Tn + In ≤ t < Tn+1] (18)

for all t = 0, 1, . . ., with the source active (resp. silent) during
timeslot [t, t + 1) if At = 1 (resp. At = 0).

An independent on-off source is one for which (i) the
{1, 2, . . .}-valued rvs {In, n = 1, . . .} and {Bn, n = 1, . . .}
are mutually independent rvs which are independent of the pair
of rvs I0 and B0 associated with the initial cycle; and (ii) the
rvs {In, n = 1, . . .} (resp. {Bn, n = 1, . . .}) are i.i.d. rvs with
generic off-period duration rv I (resp. on-period duration rv B).
Throughout the generic rvs B and I are assumed to be indepen-
dent {1, 2, . . .}-valued rvs such that 0 < E [B] ,E [I] < ∞, and
we simply refer to the independent on-off process just defined
as the on-off source (B, I).

In general, the activity process (18) is not stationary unless the
IN-valued rvs I0 and B0 are selected appropriately. One possible

3For simplicity, we set this rate to be unity, say one packet/slot, i.e., r = 1.

way is to use the following variation on constructions given in
[2], [32]: With

p :=
E [B]

E [B] + E [I]
, (19)

we introduce the {0, 1}-valued rv U given by

P [U = 1] = p = 1 − P [U = 0] . (20)

Let B̂ and Î denote two {1, 2, . . .}-valued rvs distributed ac-
cording to the forward recurrence time (11) associated with B

and I , respectively. A stationary version of (18), still denoted
{At, t = 0, 1, . . .}, is now obtained by selecting (I0, B0) so
that

(I0, B0) =st (0, B̂)U + (Î , B)(1 − U) (21)

with rvs U , B, B̂ and Î taken to be mutually independent and
independent of the rvs {Bn, In, n = 1, . . .}. In that case, we
see that

P [At = 1] = 1 − P [At = 0] = p, t = 0, 1, . . .

where p is the average rate (19).
Thus, the independent version of the stationary on-off process

is simply a sequence {Ât, t = 0, 1, . . .} of i.i.d. {0, 1}-valued
rvs, with

P
[

Ât = 1
]

= 1 − P
[

Ât = 0
]

= p, t = 0, 1, . . .

where p is as above. It is easily seen that {Ât, t = 0, 1, . . .}
is also a stationary on-off process with geometric on-period and
off-period, i.e., the corresponding on-period duration rv B (re-
spectively, off-period duration rv I) is geometrically distributed
with parameter p (respectively, 1 − p), i.e.,

B =st G(p) and I =st G(1 − p)

in the notation (9). In other words, {Ât, t = 0, 1, . . .} can
be interpreted as the discrete-time stationary on-off process
(G(p),G(1 − p)).

B. Lower bounds for on-off sources

In [38], several sets of conditions on B and I were derived for
the discrete-time on-off source (B, I) to have the SSI property.
One such set of conditions is presented next:

Proposition 25: The discrete-time stationary on-off source
(B, I) satisfies the SSI property if the conditions (i)-(iv) below
hold, where
(i) The rvs B and I are DFR;

(ii) The rvs B̂ and Î are DFR;
(iii) E [B]

−1
+ E [I]

−1 ≤ 1;
(iv) P [B = 1] + P [I = 1] ≤ 1.

The proof of Proposition 25 relies on calculations that are
available in [38]. Upon combining Proposition 25 with Theorem
19, we have

Theorem 26: Let {At, t = 0, 1, . . .} be a discrete-time on-
off source (B, I) satisfying the conditions of Proposition 25. Its
independent version {Ât, t = 0, 1, . . .} is a sequence of i.i.d.



{0, 1}-valued rvs with P
[

Ât = 1
]

= p for all t = 0, 1, . . ., and

we have the comparison

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .}.

Moreover, the corresponding buffer contents {Q̂t, t = 0, 1, . . .}
and {Qt, t = 0, 1, . . .} are ordered in the icx ordering, i.e., for
any fixed initial condition Q̂0 = Q0 = q, we have Q̂t ≤icx Qt

for all t = 0, 1, . . ..
To close the discussion for the class of on-off sources, we

observe that the steady state comparison Q̂ ≤icx Q can be es-
tablished under weaker conditions than the ones used in The-
orem 26. Indeed, fewer conditions are needed to establish a
version of the pivotal Proposition 25 for the non-stationary (i.e.,
non-delayed) version of the on-off source (B, I); details can be
found in [38].

IX. M |G|∞ INPUT TRAFFIC

The discrete-time M |G|∞ input traffic is simply the number
of busy servers in the infinite server system fed by a discrete-
time Poisson process with rate λ (customers per timeslot) and
with generic service time S (expressed in timeslots). A more
detailed treatment of M |G|∞ input processes can be found in
[20], [27], [28], [29], [30]. This process is a versatile class of
input traffic since both short-range and long-range dependent
traffic can be generated by properly selecting the service distri-
bution.

A. Modeling M |G|∞ traffic sources

Consider a system of infinitely many servers, and suppose Bt

customers arrive to the system during timeslot [t − 1, t) (t =
1, 2, . . .). Customer i (i = 1, 2, . . . , Bt) is assigned its own
server from which it starts receiving service with duration St,i

(number of timeslots) in timeslot [t, t + 1). If there are b initial
customers present in the system at time t = 0, initial customer i

(i = 1, 2, . . . , b) will have service time duration S0,i (starting at
t = 0). Let At be the number of busy servers, or equivalently,
the number of customers still present at the beginning of the
timeslot [t, t + 1). The busy server process {At, t = 0, 1, . . .}
defines the M |G|∞ input process.

To define the stationary and ergodic version of the M |G|∞
input process, we need to make some assumptions on the IN-
valued rvs b, {Bt, t = 1, 2, . . .}, {St,i, t = 1, 2, . . . , i =
1, 2, . . .} and {S0,i, i = 1, 2, . . .}: (i) These rvs are mutually in-
dependent; (ii) The rv b is Poisson distributed with mean λE [S];
(iii) The rvs {Bt, t = 1, 2, . . .} are i.i.d. Poisson rvs with mean
λ > 0; (iv) The rvs {St,i, t = 1, 2, . . . , i = 1, 2, . . .} are
i.i.d. with common pmf G on {1, 2, . . .}. Let S be a generic
rv distributed according to the pmf G and assume throughout
that E [S] < ∞; and (v) The rvs {S0,i, i = 1, 2, . . .} are i.i.d.
{1, 2, . . .}-valued rvs with common pmf Ĝ which is the forward
recurrence pmf associated with G via (11). Let Ŝ be a generic
IN-valued rv distributed according to Ĝ.

Hereafter, by an M |G|∞ input process we mean the station-
ary and ergodic version, still denoted {At, t = 0, 1, . . .}, which
is determined by the conditions above. Also, we shall write

{Ŝi, i = 1, 2, . . . , } instead of {S0,i, i = 1, 2, . . . , }. Since
the M |G|∞ process can be characterized by two parameters,
namely λ and S, we refer to it as the M |G|∞ input process
(λ, S). The next proposition summarizes needed properties of
the stationary M |G|∞ input process {At, t = 0, 1, . . .} [29].

Proposition 27: Under assumptions (i)-(v) above, the
M |G|∞ input process (λ, S) is a (strictly) stationary and er-
godic process {At, t = 0, 1, . . .} with the following properties:
(i) For each t = 0, 1, . . ., the rv At is a Poisson rv with parame-
ter λE [S]; and (ii) Its covariance function is given by

cov(At, At+h) = λE [S]P
[

Ŝ > h
]

, h = 0, 1, . . . .

for all t = 0, 1, . . ..
We now argue that the independent version of M |G|∞ input

process (λ, S) is also an M |G|∞ input process, say (λ0, S0),
where λ0 and S0 are properly selected. Indeed, if we take
S0 ≡ 1, then each customer (each session) requires exactly
one timeslot of service before leaving the system at the end of
that timeslot. Therefore, the number of customers in the system
at the beginning of timeslot [t, t + 1) is simply the number of
customers who arrive in timeslot [t − 1, t) independently of ar-
rivals in the past and future timeslots. Let {Ât, t = 0, 1, . . .}
denote the M |G|∞ input process (λ0, S0 ≡ 1) as specified
above. By the first part of the discussion, it is plain that the
rvs {Ât, t = 0, 1, . . .} are mutually independent, in agreement
with Claim (ii) of Proposition 27 which would yield in that case

cov(Ât, Ât+h) = λ0P
[

Ŝ0 > h
]

= λ0δ(0, h)

for all t, h = 0, 1, . . .. By Claim (i) of Proposition 27, for each
t = 0, 1, . . ., the rv At is Poisson rv with parameter λE [S] and
Ât is a Poisson rv with parameter λ0. Thus, the marginals of the
sequence {At, t = 0, 1, . . .} for the given M |G|∞ input pro-
cess (λ, S) will coincide with those of its independent version
{Ât, t = 0, 1, . . .} provided λ0 = λE [S]. Combining these
observations we conclude that the independent version of the
M |G|∞ input process (λ, S) is the M |G|∞ input process with
(λE [S] , 1).

B. Lower bounds for M |G|∞ models

We now turn to establishing (7) and (8) for M |G|∞ input
processes. Unfortunately, we were not able to show directly
that M |G|∞ input processes are SSI [38], although they are
associated [27], [29]. Instead we took our cue from Corol-
lary 8 to the effect that the sm ordering is stable under inde-
pendent summation: This property suggests the following very
natural approach, whereby we seek an additive decomposition
of the M |G|∞ input process into several independent compo-
nents, each with the SSI property. In that case, the independent
version of each component will act as a lower bound to the cor-
responding component in the sm ordering. The sum of the in-
dependent versions of the component processes is statistically
indistinguishable from {Ât, t = 0, 1, . . .} and satisfies (7) and
the desired result will then follow from Corollary 8.



To carry out this program, fix t = 0, 1, . . .. From the system
description in Section IX-A, we can write

At = A
(0)
t + A

(a)
t (22)

where A
(0)
t and A

(a)
t are the numbers of busy servers in the sys-

tem at the beginning of the timeslot [t, t + 1) contributed by
the initial customers and new arrivals during [0, t), respectively.
From the b initial customers, customer i (i = 1, 2, . . . , b) will be
in the system at the beginning of timeslot [t, t + 1) if and only
if Ŝi > t, whence

A
(0)
t =

b
∑

i=1

1
[

Ŝi > t
]

. (23)

Similarly, it is easy to see [27], [29] that

A
(a)
t =

t
∑

r=1

Br
∑

i=1

1 [Sr,i > t − r] =

∞
∑

r=1

A
(r)
t (24)

where for each r = 1, 2, . . ., the sequence {A
(r)
t , t = 0, 1, . . .}

corresponds to those Br customers who arrive in timeslot [r −
1, r), i.e., for all t = 0, 1, . . ., we have

A
(r)
t = 1 [t ≥ r]

Br
∑

i=1

1 [Sr,i > t − r] . (25)

The sequences {A(0)
t , t = 0, 1, . . .} and {A

(r)
t , r = 1, 2 . . .},

r = 1, 2, . . ., are mutually independent and display a very simi-
lar structure. To exploit this fact we shall make use of the fol-
lowing result:

Proposition 28: Let K be an IN-valued rv which is indepe-
dent of the i.i.d. {1, 2, . . .}-valued rvs {ξ, ξk, k = 1, 2, . . .}.
Then, the sequence {

∑K
k=1 1 [ξk > t] , t = 0, 1, . . .} is SSI.

Proof. Write Xt =
∑K

k=1 1 [ξk > t] for all t = 0, 1, . . ., and
let Bin(N, p) denote the Binomial distribution with paremeters
N (N = 1, 2, . . .) and p (0 ≤ p ≤ 1). Elementary arguments
[38] show that for each t = 0, 1, . . .,

[Xt+1|X0 = x0, . . . , Xt = xt] =st Bin(N, p)

for all (x0, . . . , xt) in INt+1 such that

P [X0 = x0, . . . , Xt = xt] > 0,

with N = xt and p = P [ξ > t + 1|ξ > t]. The result is
obtained by recalling that for a given p, the Binomial rv
Bin(N, p) is increasing in N in the st ordering [35].

Proposition 28 leads to the next two lemmas.
Lemma 29: The sequence {A

(0)
t , t = 0, 1, . . .} is SSI.

Proof. The result is a direct consequence of Proposition 28
once we note that the sequence {A

(0)
t , t = 0, 1, . . .} has the

same structure as that introduced in Proposition 28, with K = b

and ξ = Ŝ.

Lemma 30: For each r = 1, 2, . . ., the sequence {A
(r)
t , t =

0, 1, . . .} is SSI.

Proof. Fix r = 1, 2, . . .. Note that A
(r)
t = 0 whenever

t = 0, . . . , r − 1, but A
(r)
r =st Br. Hence, the SSI property of

the sequence {A
(r)
t , t = 0, 1, . . .} is equivalent to that of the

sequence {A
(r)
t+r, t = 0, 1, . . .}. This latter sequence of rvs has

the same structure as that introduced in Proposition 28, with
K = Br and ξ = S, and the desired result follows.

Collecting the various strands of the discussion thus far, we
get the following result:

Theorem 31: Let {At, t = 0, 1, . . .} be an M |G|∞ input
process (λ, S). Its independent version {Ât, t = 0, 1, . . .} is the
M |G|∞ input process (λE [S] , 1), and we have the comparison

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .}.

Moreover, the corresponding buffer contents {Q̂t, t = 0, 1, . . .}
and {Qt, t = 0, 1, . . .} are ordered in the icx ordering, i.e., for
any fixed initial condition Q0 = q, we have Q̂t ≤icx Qt for all
t = 0, 1, . . ..

Proof. By Lemma 29 and Theorem 15, we have

{Â
(0)
t , t = 0, 1, . . .} ≤sm {A

(0)
t , t = 0, 1, . . .}

where {Â
(0)
t , t = 0, 1, . . .} is the independent version of

{A
(0)
t , t = 0, 1, . . .}. On the other hand, by Lemma 30 and

Theorem 15, we conclude for each r = 1, 2, . . . that

{Â
(r)
t , t = 0, 1, . . .} ≤sm {A

(r)
t , t = 0, 1, . . .}

where {Â
(r)
t , t = 0, 1, . . .} denotes the independent version of

{A
(r)
t , t = 0, 1, . . .}. It is always possible to construct all in-

volved rvs on a single probability triple so that the independent
versions are mutually independent. Hence, under the enforced
independence assumptions, upon invoking Corollary 8, we ob-
tain

{Â
(0)
t +

R
∑

r=1

Â
(r)
t , t = 0, 1, . . .}

≤sm {A
(0)
t +

R
∑

r=1

A
(r)
t , t = 0, 1, . . .} (26)

for each R = 1, 2, . . ..
Now let R go to infinity in (26), and note the convergence

{A
(0)
t +

∑R
r=1 A

(r)
t , t = 0, 1, . . .} =⇒R {At, t = 0, 1, . . .}

(via (24)) and {Â
(0)
t +

∑R
r=1 Â

(r)
t , t = 0, 1, . . .} =⇒R {Â

(0)
t +

∑

∞

r=1 Â
(r)
t , t = 0, 1, . . .} (where in fact the limiting rvs exist

by pointwise convergence). By Lemma 9, the sm ordering is
stable under weak convergence, and we obtain the comparison

{Â
(0)
t +

∞
∑

r=1

Â
(r)
t , t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .}.



For each R = 1, 2, . . ., the sequence {Â
(0)
t +

∑R
r=1 Â

(r)
t , t =

0, 1, . . .} is an independent version of {A(0)
t +

∑R
r=1 A

(r)
t , t =

0, 1, . . .}. Therefore, in the limit, the sequence {Â
(0)
t +

∑

∞

r=1 Â
(r)
t , t = 0, 1, . . .} is statistically indistinguishable of

the independent version {Ât, t = 0, 1, . . .} of {At, t =
0, 1, . . .} discussed in Section IX-A. In sum, the comparison

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .}

holds. The second half of the result is now immediate from
Theorem 19.
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