

Center for Satellite and Hybrid Communication Networks

Adaptive Hierarchical Network Modeling and Simulation

John S. Baras Armand Makowski Prakash Narayan Electrical and Computer Engineering Department and the Institute for Systems Research

> DARPA NMS Kick Off Meeting East Coast July 18, 2000

Adaptive Hierarchical Network Modeling and Simulation

NEW IDEAS/METHODS

- Robust multi-scale traffic models and model complexity vs performance tradeoff
- Hierarchical loss network models and progressive estimates and control
- Self-configurable adaptive hierarchical traffic models linked to network management and control functions

IMPACT

- New network laws for new traffic types (fractal)
- Two to three orders of magnitude faster performance evaluation of large networks
- Enabler of intelligent network management via models
- Accurate network planning and dimensioning

SCHEDULE

Self-similar traffic models and wavelets Multi-fractal traffic models and wavelets Queuing theory/control Aggregation hierarchies Network design and control on hierarchies

University of Maryland College Park: J.S. Baras, A. Makowski, P. Narayan

Main Goal

- Realize the vision of hierarchical network models that can automatically adapt to traffic characteristics and network management needs
- Focus on new fundamental methods utilizing polymorphic models for traffic, analytical approximations, and hybrid multi-criteria optimization

- Develop robust multi-models of network traffic models of minimum complexity for network control and planning
- Assess the incremental utility of various network traffic models *wrt* speed, complexity, performance of function which uses them
- Evaluate the impact of various network traffic models (fitted to measured network traffic data) on
 - control performance (e.g. response time, fairness, priority fidelity, packet loss)
 - on allocation of network resources (e.g. buffer sizes, capacities)
 - on network performance predictability (e.g. QoS predictions vs actuals, proactive fault management, network availability)

- Model classes arranged in aggregation hierarchies
 - based on time scale, geography/topology scale, network state, distribution of values of performance metrics
 - finer and coarser representations are communicating as frequently as needed to maintain consistency
 - Network functions select and utilize automatically models of the needed granularity
- Use on-line measurements for both on-line and off-line model construction, adaptation and selection
 - validation/verification of models via robust control methods
 - combined model selection and validation problem (dynamic game)
 - sampling in the range space of variables (min overhead)

- Self-organized algorithms and systems that automatically select appropriate models and scale for the function
 - both on-line and off-line processing
 - learning and adaptation
 - learn patterns, models, strategies

- Network Traffic Models for Control and Planning
- Adaptive Hierarchical Modeling Incorporating On-Line Measurements
- Simulation Experimentation and Validation

Network Traffic Models for Control and Planning

- Self-similar and multi-fractal models
 - understand the "laws"
 - "fast" and "slow" time scales
 - < 100 ms, protocol dynamics, queue control
 - 100 ms to 10 min, user dynamics, aggregate flow control
 - > 10 min, network planning and dimensioning
- Deeper investigation of self-similar and multifractal models
 - ON/OFF, aggregations, FBM, $M|G| \infty$
 - Causes and "new network laws"
 - Queuing analysis

Network Traffic Models for Control and Planning (cont.)

- Statistical Methodologies for Network Traffic Data Analysis
 - analysis of measured traffic traces
 - traffic model fitting and parameter estimation
 - model parameter tuning and adaptation
 - wavelet and multiresolution methods
 - properties of estimators (bias, confidence intervals, consistency)
 - discrete operations with uniform and non-uniform sampling
 - tests for fractality and multi-fractality
 - Minimum Description Length (MDL) complexity analysis of models, tests and parameter estimators

- Model Selection and Fitting to Traffic Traces
 - MDL selection of models of "minimum complexity"
 - evaluation of different models types fitting the same trace from an MDL perspective
 - models parameter estimation via matching specific traffic descriptors, or via model identification techniques (M|G|∞, FGN, MMB, MMP, ARIMA, HMM, Petri Nets, etc.)
- Queuing Theory and Control
 - large buffer asymptotics for packet loss and more
 - for fractal and multi-fractal models
 - impact of short-time fluctuations
 - fast approximations
 - performance of RED and variations, impact on MAC design, impact on dynamic bandwidth allocation

- Incremental Utility of Models for Control and Management
 - key challenge in linking network modeling and simulation to network management
 - fit different type models to the same traffic trace
 - derive best model based control and/or management strategy using fitted model
 - compare relative performance of resulting strategies via detailed simulations and real experiments
 - seek "laws" that govern buffer, schedule and queue dynamics based on performance metrics
 - "fast" time scale: model based prediction, dynamic queue service scheduling, dynamic bandwidth allocation in wireless, buffer and packet drop policies
 - "slow" time scale: network resource planning, design and dimensioning
 - analysis of traffic shaping controls

Adaptive Hierarchical Modeling Incorporating On-Line Measurements

- Large networks ⇔ complex systems ⇔ hierarchies ⇔ adaptation and self-organization
- Aggregation due to topology, routing, time scales, size
 - adaptive aggregation methods
 - prediction/estimation accuracy *vs* aggregation level/resolution
 - convergence, robustness, domain of validity in relation to specific control and/or management function
- Minimum Complexity Hierarchical Traffic Modeling
 - refinement/coarsening and "updating" in the ladder
 - extensions of MDL to hierarchies
- Hierarchical Loss Network Model
 - validity, convergence, performance
 - new traffic models impact

- Multi-Objective Design and Sensitivity Analysis
 - use of automatic differentiation techniques for sensitivity analysis
 - trade-off analysis via multi-objective optimization
 - linkage to traffic models and simulations
- Network Control, management and resource allocation
 - progressive representations using hierarchies
 - complex systems and learning/adaptation
- Multiple Performance Metrics and Hierarchical Models
 - multi-performance trade-offs within the hierarchical framework
 - adaptivity: different subnetworks use different model types in the hierarchy

Simulation, Experimentation and Validation

- Importance Sampling
 - rare events and change of probabilities
 - beyond large deviations due to LRD
 - evaluation of blocking probabilities in $M|G|\infty$ fractal or multi-fractal
 - evaluation of blocking probabilities for problems involving aggregation of many ON/OFF processes
- Model Validation
 - formal verification methods and extensions
 - hierarchical models
 - combined model selection and validation, robust control, dynamic games
- Software Implementation
 - COTS +: MATLAB, SPLUS, OPNET, ILOG SOLVER and CPLEX
 - CORBA-JAVA and UML
 - Experimentation, testing and validation of models, algorithms, methods