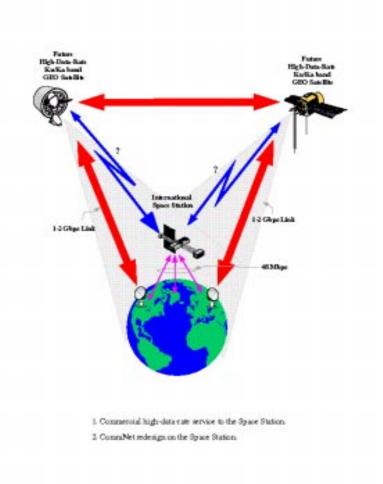


Center for Satellite and Hybrid Communication Networks

A Commercial Communications System for the ISS

John S. Baras

Presentation at the ISS Utilization Conference Albuquerque, New Mexico February 2, 1999



High Data Rate Communications from Spacecraft and Space Missions

- Commercial Space needs high data rate and high quality communications
 - Experiments with Shuttle
 - Experiments with ISS
 - Spacecraft linkage
 - Future space habitats and planetary missions
- NASA networks, spacecraft, instruments on the Internet
- Needed:
 - Efficient and cost effective communications from spacecraft to commercial satellite constellations
 - Experiments to validate such systems

HDR Commercial Communication Services to the ISS

 Initiated interactive modeling and simulation of HDR telecomm services between the ISS and future HDR satellite constellations

Support for NASA Missions: Objectives and Significance

• Objectives:

- Provide high quality broadband communications connectivity to the ISS from commercial satellite networks
- Facilitate broadband Internet services throughout NASA missions
- Provide performance evaluation of space communication systems

Significance:

- International Space Station (ISS) is the NASA Mission with the highest priority
- National Space Policy mandate for NASA to commercialize its space communications operations
- Reduction in cost for NASA broadband communication needs
- Better and easier dissemination of NASA mission and experiments data

Development of Simulation Testbed

Modular simulation testbed under development includes:

- Realistic traffic source models for broadband services
- Protocol enhancements for Internet (TCP/IP) and ATM service provision via satellite
- Orbital/coverage models of candidate satellite constellations
- Satellite Gateway Model (Link Enhancements (Coding), Framing)

Further enhancements will include:

- Network topology architectures (including Inter Satellite Links)
- Antenna & channel RF (Ka and V Band cases) characteristics
- On-board switching models
- Phase arrays and tracking

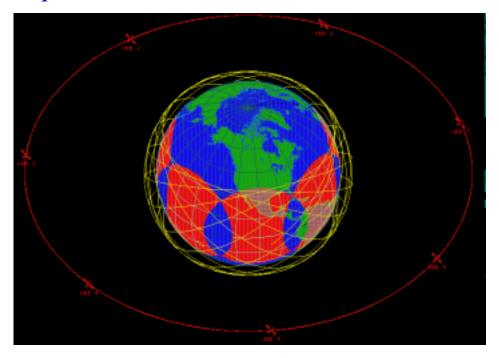
Project Plans

• OBJECTIVE: Investigate the use of commercial GEO and LEO/MEO satellite constellations for the communication needs of various NASA missions and in particular the International Space Station (ISS).

• Phase I:

- 1. Determine, in cooperation with NASA LeRC particular traffic scenarios, QoS service requirements for initial analysis scenario
- 2. Identify potential commercial systems as candidate for investigation, starting from simple GEO (existing) Ku/Ka-band systems and moving to Ka/V band MEO/LEO systems

Phase II:


- 1. Where necessary apply analytical tools for traffic modeling, handoff analysis, fast end-to-end performance evaluation
- 2. Develop simulation model that includes network architecture & topology of Hybrid Network, including:
 - ISS (treated as an extremely LEO satellite) & NASA ground network.
 - Candidate Commercial Systems (constellation orbit model, ground network topology, information on routing options through constellation, ISLs if any)

Project Plans

• Phase III:

 Using analysis & simulation perform detailed studies to quantify the performance of candidate satellite systems for specific services, protocols & traffic scenarios and recommend potential design modifications to ensure NASA's QoS requirements are met

& MEO Constellation - Orbit Model

Performance Parameters for NASA Missions

Performance parameters that need to be addressed include:

- COVERAGE: Percent of time that data could be transmitted to the ISS via the commercial satellite system (this includes Static & Dynamic coverage and the effect of Inter Satellite Links)
- THROUGHPUT: Maximum amount of information that can be exchanged between constellation & ISS, based on service availability and the per channel data rate
- QUALITY-OF-SERVICE: Level of confidence for the reliable delivery of information to NASA users: Link quality (BER), Link Availability, Connectivity
- ANTENNAS & TERMINALS: Antenna & earth terminal characteristics wrt required link quality. It would be necessary to have an antenna design well suited for covering both LEO vehicles and terrestrial traffic