

1

NEXT GENERATION SATELLITE SYSTEMS FOR AERONAUTICAL COMMUNICATIONS

Participating Units at U of Maryland: NEXTOR: National Center of Excellence for Aviation Operations Research CSHCN: Center for Satellite and Hybrid Communications Networks

> Michael Ball Leandros Tassiulas Özgür Erçetin

Commercial Objectives and Significance

Objectives:

- Hybrid ground-based/SATCOM architecture
- Develop evolution strategy that is economically viable
- Demonstrate benefits

• Significance:

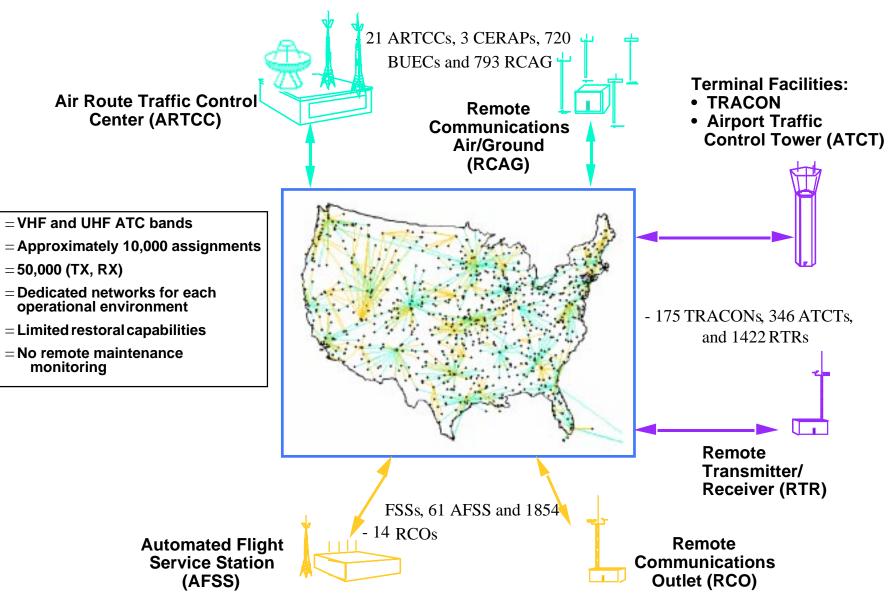
- Broadband communications to aircraft
- Economic benefits to airline industry
- Improvements in air traffic control

Types of Communication Services

Safety Communications

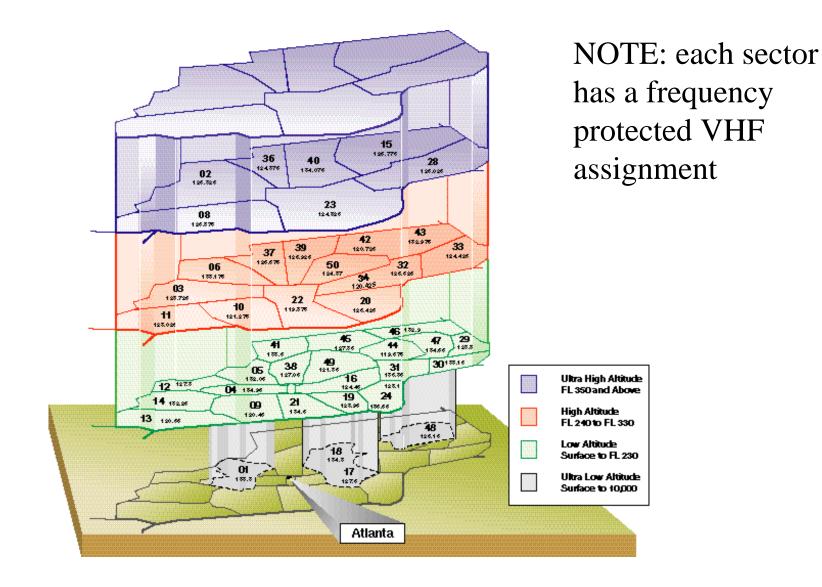
- Air Traffic Services (ATS)
 - Air Traffic Control.
 - Weather and Flight Information Services.
- Aeronautical Operational Control (AOC)
 - Dispatch, Flight Planning, and independent company communications.

Types of Communication Services


Non Safety Communications

- Aeronautical Administrative Communications (AAC)
 - Cabin Provisioning, other company related non-safety communications.
- Aeronautical Public Correspondence (APC)
 - Public Correspondence, personal communications by/for passengers.

Air/Ground Communications


Overview of En Route Air Traffic Control

- There are 21 ARTCC facilities providing ATC for the continental USA.
- Each ARTCC has control on only a portion of the airspace.
- The safe separation of the IFR aircraft in this airspace is the responsibility of the corresponding ARTCC.
- This airspace is further divided into the sectors, which have a specific radio frequency allocation for the communication between the controller of the sector and the pilots.

Spectrum Overview: Atlanta Center Airspace

...46 3-Dimensional Sectors ("Cells")

Current VHF ATC Communication System

- The communication between controllers and pilots is analog and voice-only, and achieved via terrestrial remote radio stations positioned across the country.
- VHF system consists of 47,000 ground-based radios at 3,700 locations. 800 of these sites are for en-route communications.
- ATC communication is performed over the frequency bands VHF 118-136MHz (civilian), and UHF 225-400MHz (military).

Current VHF ATC Communication System

- FAA estimates that about 54 million flights will have to be handled annually by 2002.
- Current VHF system is old and the capacity is inadequate for the current increase in air traffic.
- Some disadvantages of the current VHF system are:
 - Low utilization, voice congestion,
 - Inefficient, e.g. 1 in 7 messages is a handoff.
 - High failure rates for the aging equipment, susceptibility to channel blockage.
 - Interference and lack of security.

Current Data Link ACARS

- Currently, data link is used for non-ATC air/ground communications.
- ARINC provides VHF ACARS service to over 6000 aircraft, using the 4MHz of AMS spectrum.
- ARINC also provides HFDL and SATCOM service for oceanic ATC.

10

Planned Data Link Evolution

- ARINC will be contracted to provide data link with VDL2 standard for Controller to Pilot Data Link Communications (CPDLC) starting in 1999.
- By 2002, FAA plans to start deployment of digital NEXCOM radios for analog voice.
- Aeronautical Telecommunications Network (ATN)
 - VHF A/G resources will be interconnected for efficient use of the resources and to support new capabilities such as intrinsic backup.

Digital radios and VDL3

- By 2002, FAA plans to start deployment of digital NEXCOM radios.
 - By 2008 digital radios will be installed and digital voice will be in service.
 - By 2010 all high altitude en-route sectors will be using data link services.
 - NEXCOM radios will be TDMA with 4 channels (2V2D, 3V1D or 4V)
 - VDL 3 is TDMA, 25KHz channel using 10.5Kbaud rate differential 8bit PSK; supports preemption, precedence
 - VHF A/G can support voice and data broadcast from non-FAA sources.
 - VDL 3 will deliver both ATC, and AOC data with priority, preemption, precedence.

Aeronautical Telecommunications Network (ATN)

- Point-to-point ISO/OSI packet-mode data traffic network.
- ATN will automatically route messages through best networks and data links available.
- To be fully functional, the system requires both an airborne and ground ATN router, which connects the user end systems with different A/G links and ensure reliable message delivery.

13

Designed to guarantee the integrity and priority of messages

VHF TDMA System En-Route Data Link Services

- Initial Contact, Altimeter setting
- SIGMETs, PIREPs
- Weather Advisories
- Route Amendments, Traffic Advisories
- Speed Adjustments/Restrictions
- Frequency Changes/Routine Handoffs/Transfer of Radio Communications
- Traffic Management Information
- Flight Plan Amendments/Routings

Next Generation Satellite Systems

- Future medium for aeronautical communications.
- Broad feasibility study by RTCA has shown that the proposed LEO/MEO systems are feasible.
- Key considerations for the feasibility study are:
 - Compliance with AMSS SARPs.
 - Spectrum availability and interference protection.
 - Technical considerations of coverage and capacity.
 - Service interoperability
 - Economic viability.

Advantages of Next Generation Satellite Systems

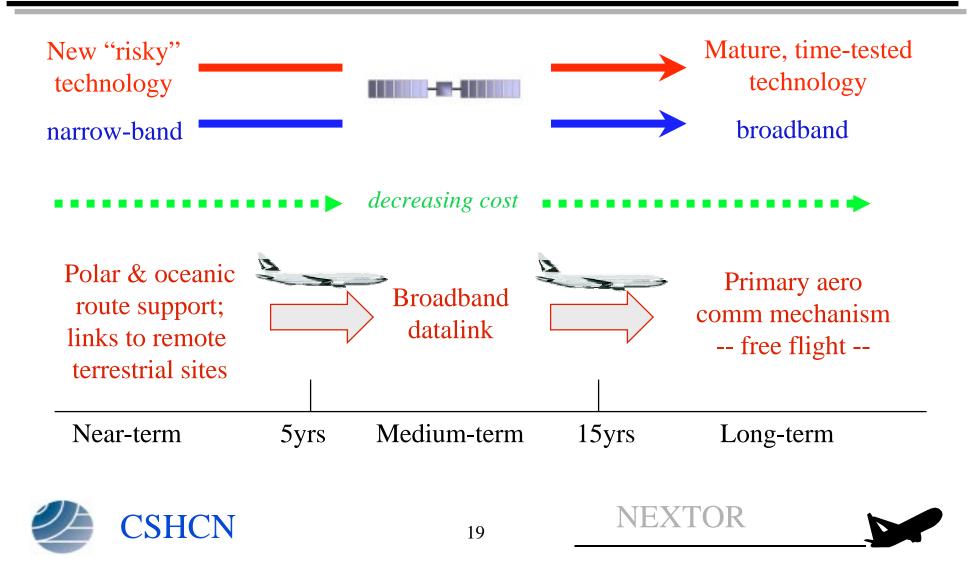
- Global coverage including polar regions.
- Increased communication capacity.
- Much lower propagation delays compared to GEOs.
- Higher frequency re use.
- The potential for universal equipage.
- Free flight.
- Economic benefits.
 - Cheaper, smaller equipment, thus smaller non-recurring and recurring costs for the airlines.

Fundamental Assumptions of Proposed Research

- Although biggest frequency congestion is at the terminal areas, the economic viability will be driven by en route communications.
- Terminal area communications capacity will be enhanced by off-loading some en-route spectrum to SATCOM.
- Hybrid ground-based/SATCOM architecture.
- Concentrate on systems issues.

Perspective of Various Players

• FAA:


- reduction in cost of ground-based infrastructure
- ability to handle increasing demand
- new services/features
- Airline motivator: bottom line \$\$ -- benefits must justify the costs
 - revenues/benefits from "back of plane" services
 - new capabilities: oceanic/polar coverage, broadband data, ???
- Satellite service providers:

CSHCN

- revenue potential must justify costs (usually implies bundling with passenger services)
- aeronautical services not highest priority

Vision for NGSS Evolution for Aeronautical Communications

Near-Term: Use of NGSS as Virtual Private Lines

- Most of the remote radio sites (RCAGs and BUECs) are connected to ARTCCs via leased lines.
 - BUECs intended for use only during RCAG failures.
 - The percent of the time BUECs and the connecting leased lines are used is quite small ==> extremely low link utilization.
 - Can NGSS provide virtual private line(VPL) service to replace current leased lines?
 - A call is set up between corresponding ARTCC and the BUEC when the need arises.

NEXTOR

Additional benefit of maintenance communications

Virtual Private Lines: Research Questions

• What are the costs and benefits of such a system?

- In the transition to NEXCOM system, analog lines will be replaced; this provides a potentially opportune time to transition to (digital) NGSS.
- Can NGSS provide acceptable call setup delay and call prioritization?
- In principle NGSS can provide high availability.
 What is the cost of providing VPL service with acceptable availability?

Near-Term: Remote and Oceanic Coverage

- Currently no remote or oceanic ATC.
- Voice and data comm via HF and SATCOM.
- HF experiences high delays and is susceptible to interference.
- Inmarsat SATCOM is expensive and still experiences high delays.
- NGSS may provide low delay service with cheaper and smaller equipment.

Remote and Oceanic Coverage Research questions

- Is such a system operationally compatible with current systems?
 - Push-to-talk, party-line, etc.
- NGSS must be compatible with ATN for data service.
 - Priority-precedence-preemption
- Capacity will be probably sufficient, due to lack of calls over the ocean.
- Interoperability of different NGSS systems
 - Can we find some operational standards that support ATC over multiple NGSS service providers?
- What are the savings for the airlines?
 - Additional flights can be accommodated; fly via shortest route.

CSHCN

Near-Term: Polar Coverage

- Some NGSS can provide full communication coverage for polar routes. NGSS + ADS-B provides attractive system for managing polar flights.
- Iridium, ICO, Boeing and Teledesic provide polar coverage.
- A niche use of SATCOM for NGSS providers
- More efficient routes for airlines

Polar Coverage Research Questions

- Operational requirements, compatibility
 - Operational questions for oceanic coverage apply for polar coverage as well.
- Most important question: Reliability/redundancy
 - No other back up system.
- What is the extent of benefits to the airlines of greatly improved polar route options?

Medium Term: Viability of NGSS Datalink

- NGSS SATCOM is basically an additional data link, with specific characteristics.
- Initial use of NGSS SATCOM will be by transoceanic aircraft.
 - Use for ATC/ATM needs until destination terminal area is reached
 - Partition the users as *equipped* and *non-equipped*.
 - Equipped aircraft use SATCOM relieving the rest of the system.
- How much terminal and en route communication capacity is freed by different equipage penetration levels?

Medium Term: Viability of NGSS Datalink (cont)

- Partition the information -- transfer particular information types with different communication links, i.e. SATCOM, VHF data link, VHF digital voice.
 - New data link applications, e.g. weather maps, weather advisories, are broadcast to many users and require high data rates.
 - SATCOM is a natural choice for non-time critical, high data rate information -- offloads spectrum for time critical data such as hand-offs and emergency voice.
 - Spectrum freed up for use in congested terminal areas, where voice will continue to be the primary means of communication.

Medium Term: Viability of NGSS Datalink (cont)

- What is the most appropriate partition of information among VDL-2, VDL-3, HFDL, SATCOM, and voice?
- How does the cost/bandwidth/performance of NGSS compare to alternatives?
- What requirements should be placed upon NGSS systems to provide the required performance?

Medium Term: Voice Communications and Network Compatibility

- ATC Voice Communication Based on Point-to-Point Connections
- Limited use -- primarily for over-land portion of transoceanic flights.
- Point-to-point connection set up to ARTCC.
- How can these connections be integrated into existing system:
 - setup delay
 - operational issues -- emulation of multi-cast connections
 - due to high setup delay, special handoff process may be needed

Control Responsibility between ATN Layer and NGSS Physical Subnet

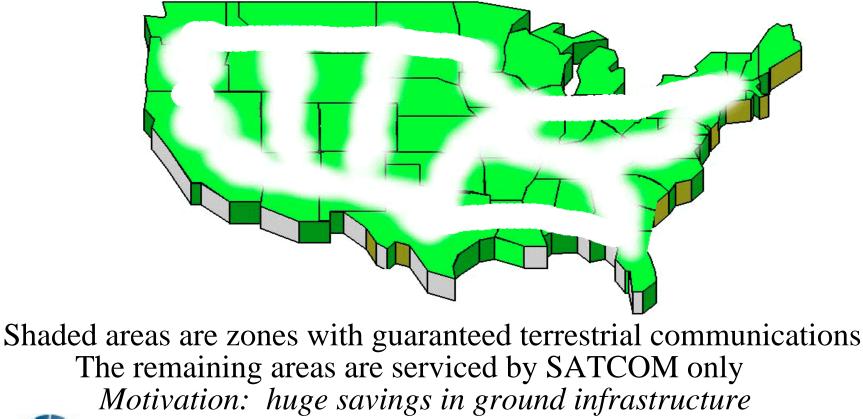
- There will be multiple physical links and physical subnets connected to ATN layer
- In theory ATN layer should find most efficient route to aircraft
- What is division of responsibility between ATN layer and NGSS subnet?

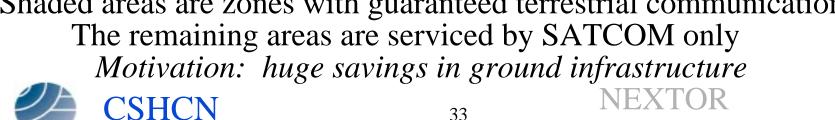
Long Term: Multicast Call Problem in NGSS

- Requirement for provision of voice services
 - Some party line capability required: all airborne users in a particular "sector" should receive all information broadcast by the controller of that "sector".
 - "sector" is used in more general sense-"community of interest"
 - These airborne users form a *multicast group*.
 - Each sector may be serviced by multiple spot beams, which are moving as well.
 - As the aircraft flies on it's path, it changes spot beams as well as sectors.
 - The multicast group of a user has to be changed when it moves into a new sector.
- What are the consequences and requirements of such a system?

CSHCN

- The handoff 's should be transparent to the controllers and pilots.


Transparent Handoffs


- Transparent handoffs should be possible both for NGSS and NEXCOM, eliminating current voice communication overhead
- Sector-to-sector handoffs within an ARTCC
 - on-site processing may be sufficient
- Handoffs between two ARTCCs
 - many cases: voice vs data, multi-cast vs unicast
 - problem may be similar to mobile wireless network handoff questions

Long Term: Terrestrial Infrastructure as **Secondary Communications Mechanism**

Hybrid Communication with Reduced Infrastructure

Hybrid Communication with Reduced Infrastructure: Concepts

- Guaranteed terrestrial communication within the specified zones.
- Zones are created so as to support all major airports.
- Free flight supported by NGSS; free flight requires NGSS equipage.

Research Questions

- What is the best *reduced infrastructure*?
- What are cost savings?
- What is impact on airspace congestion?
- What equipage policies will airlines adopt in response to such an architecture?

Long Term Solution to Capacity Needs

- In the future, much higher data link capacity may be needed because of the new applications that will evolve with data link.
 - Is NGSS the most effective and cost efficient way of providing this increased capacity?
- Improvements in air traffic control by the use of NGSS.
 - Broadcast delivery of the common information
 - Better voice/data integration
- New approaches to sectorization.

Economic Justification -- FAA

- Assuming that SATCOM provides capacity enhancement and/or redundancy, how can the emerging new digital ground-based infrastructure be altered?
- Can substantial cost savings be derived?
 - What are the tradeoffs between incremental "investments" in SATCOM vs incremental investments in ground based infrastructure?

Economic Justification -- Airlines

- Will airlines be willing to equip aircraft to interface new SATCOM systems?
 - What are the benefits to airlines that justify investment?
 - Can FAA pass on potential savings to airlines?
 - Will SATCOM-primary, terrestrial-secondary be perceived as a fair, cost-effective policy that fully motivates the development of free-flight?

38

